Finite Continuum-Armed Bandits

FACULTÉ
7.9:9\%.

NEURAL INFORMATION
FACULTÉ PROCESSING SYSTEMS

Problem: Sequential allocation of T resources between N actions described by covariates a_{i}. Each action can only be completed once, and results in a stochastic reward with mean $m\left(a_{i}\right)$. The aim is to maximize the cumulative reward

A budget allocation problem

In the Finite Continuum-Armed Bandits (FCAB) problem, the agent has a budget \boldsymbol{T} to spend on \boldsymbol{N} actions described by covariates $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \in[0,1]^{N}$, where $T<N$. Each action i can only be completed once. At each time $t \leq T$, the agent

- selects an action with covariates $a_{\varphi(t)}$
- receives a corresponding stochastic reward in [0,1] with mean $m\left(a_{\varphi(t)}\right)$. She aims at minimizing the regret

$$
\boldsymbol{R}_{T}=\sum_{t \leq T} \boldsymbol{m}\left(\boldsymbol{a}_{\varphi^{*}(t)}\right)-\sum_{t \leq T} \boldsymbol{m}\left(\boldsymbol{a}_{\varphi(t)}\right)
$$

where $\boldsymbol{\varphi}^{*}$ is the oracle strategy : $\boldsymbol{m}\left(\boldsymbol{a}_{\boldsymbol{\varphi}^{*}(1)}\right) \geq \boldsymbol{m}\left(\boldsymbol{a}_{\boldsymbol{\varphi}^{*}(2)}\right) \geq \cdots \geq \boldsymbol{m}\left(\boldsymbol{a}_{\boldsymbol{\varphi}^{*}(N)}\right)$

Motivations

Pair matching problem : one aims at discovering edges in graphs by conducting sequential tests (protein-protein interaction networks, social online networks). Side information on pairs of nodes is available.

Allocation of scarce resources between competing candidates described by covariates (scholarship for students, medical supply for patients, financial help for households).

Advertisement with pay-per-impression constraints and limited budget, when side information on potential customers is available

Main challenges

The FCAB is more constrained than the classical Continuum-Armed Bandits (CAB) : it leads to lower cumulative rewards... but also lower regrets

- Restricted choice of actions

The agent cannot select good actions indefinitely (but neither can the oracle strategy !)
The agent must identify and select many good actions

The ratio $p=T / N$ governs the difficulty of the problem

- When $p \rightarrow 1$ the problem becomes trivial (any strategy must select all actions).
When $p \rightarrow 0$, the problem becomes similar to a classical ContinuumArmed Bandit (good actions are always available).

Results: When $T \propto N$, the regret is $0\left(T^{1 / 3} \log (T)^{4 / 3}\right)$. When T / N decreases, the regret increases. When $T / N \sim N^{-1 / 3} \log (N)^{2 / 3}$, the problem becomes similar to a Continuum-Armed Bandit and the regret increases up to $0\left(T^{1 / 2} \log (T)\right)$

Assumptions

Distribution of the covariates:
(A1) For $i=1, \ldots, N, a_{i} \sim U([0,1])$ i.i.d.
$M=\min \{A: \lambda(\{x: m(x) \geq A\})<\boldsymbol{p}\}$ is the expected reward for selecting $\varphi^{*}(\boldsymbol{T})$
Weak Lipschitz assumption
(A2) : There exists $L>0$ such that for all $(x, y) \in[0,1]^{2}$

$$
|m(x)-m(y)| \leq \max \{|M-m(x)|, L|x-y|\}
$$

Margin assumption:
(A3) : There exists $\mathrm{Q}>0$ such that for all $\varepsilon \in(0,1)$,

$$
\lambda(\{x:|M-m(x)| \leq \varepsilon\}) \leq Q \varepsilon
$$

Strategy

Discretize the problem as a Finite Multi-Armed Bandit (FMAB) problem

- Divide [0,1] into K same size intervals.
- Each interval I_{k} can be selected at most N_{k} times, where N_{k} is the number of actions in I_{k}.
- For $k \in\{1, \ldots, K\}, m_{k}=K \int_{I_{k}} m(a) d a$ is the expected reward for selecting an action in I_{k}.
Apply the UCB algorithm on the FMAB problem
Discard an interval once all its actions have been selected.

Upper Confidence Bound for FCAB (UCBF) Algorithm

Parameters: K, δ

Initialization:

Divide $[0,1]$ into K same size intervals I_{k}

- Discard intervals with no actions

Select one action uniformly at random in each interval
Discard those actions
For $t=K+1, \ldots, T$:
Discard intervals with no actions

- Select $k \in \operatorname{argmax} \widehat{m}_{k}\left(n_{k}(t-1)\right)+\sqrt{\frac{\log (T / \delta)}{2 n_{k}(t-1)}}$
- Select an action uniformly at random among the actions in I_{k}
- Discard this action

Upper bounds on the regret
under (A1), (A2) (A3)
Regime : $\boldsymbol{T}=\boldsymbol{p N}$ for $p \in(0,1)$
Assume that $\left(p^{-1} \vee(1-p)^{-1}\right)<\left|N^{1 / 3} \log (N)^{-2 / 3}\right|$. There exists $C_{L, 0}$ depending only on L and Q such that for the choice $K=\left\lfloor N^{1 / 3} \log (N)^{-2 / 3}\right\rfloor$ and $\delta=N^{-4 / 3}$, with probability $O\left(N^{-1}\right)$,

$$
R_{T} \leq C_{L, Q}(T / p)^{1 / 3} \log (T / p)^{4 / 3}
$$

Regime : $\boldsymbol{T}=\mathbf{0} . \mathbf{5 N}^{\alpha}$ for $\alpha \in\left(2 / 3+\epsilon_{N}, 1\right] \quad \epsilon_{N}=\left(\frac{2}{3} \log \log (N)+\log (2)\right) / \log (N)$ There exists $C_{L, Q}$ depending only on L and Q such that for the choice $K=$ $\left\lfloor\alpha^{2 / 3}(2 T)^{1 /(3 \alpha)} \log (2 T)^{-2 / 3}\right\rfloor$ and $\delta=N^{-4 / 3}$, with probability $O\left(N^{-1}\right)$,

$$
R_{T} \leq C_{L, Q} T^{1 /(3 \alpha)} \log (T)^{4 / 3}
$$

Lower bounds on the regret

(A4) : $a_{i}=i / N$ for $i=1, \ldots, N$
(A5) : reward for selecting a_{i} is Bernoulli $\left(m\left(a_{i}\right)\right)$ $\mathfrak{F}_{p, Q, L}$: functions verifying assumptions (A2) and (A3)

Regime : $\boldsymbol{T}=\boldsymbol{p N}$ for $p \in(0,1)$
For all $p \in(0,1)$, all $L>0$, all $Q>(6 / L \vee 12)$, there exists a constant C_{L} depending on L such that under (A4) and (A5), for all $N \geq C_{L}\left(p^{-3} \vee(1-p)^{-3}\right)$,

$$
\inf _{\varphi} \sup _{m \in \mathfrak{r}_{p, Q, L}} \mathbb{P}\left(R_{T}^{\varphi}(m) \geq 0.01 T^{1 / 3} p^{-1 / 3}\right) \geq 0.1 .
$$

Regime : $\boldsymbol{T}=\mathbf{0} . \mathbf{5 N}^{\alpha}$ for $\alpha \in\left(2 / 3+C_{L} / \log (N), 1\right]$

For all $L>0$, all $Q>(6 / L \vee 12)$, there exists a constant C_{L} depending on L such that under (A4) and (A5), for all $N \geq \exp \left(3 C_{L}\right)$ and all $T=0.5 N^{\alpha}$ for some $\alpha \in\left(\frac{2}{3}+\frac{C_{L}}{\log (N)}, 1\right]$,

$$
\inf _{\varphi} \sup _{m \in \mathfrak{F}_{0.5 N^{\alpha}, Q, L}} \mathbb{P}\left(R_{T}^{\varphi}(m) \geq 0.01 T^{1 /(3 \alpha)}\right) \geq 0.1 .
$$

References

Kleinberg, R. (2004). "Nearly tight bounds for the continuum-armed bandit problem." In Proceedings of the 17 th International Confierence on Neural . MIT Press

Auer, P., Ortrer, R., and Szepesvarir, C. (2007). "Improved rates for the stochastic

 continuum-armed bandit problem." In Bshouty, N. H. and Gentile, C., editiors,Learning Theory pages $454-488$, Berin. Heidelbera. Springer Beriin Heidelberg.

