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MAXIMUM LIKELIHOOD ESTIMATION FOR LINK PREDICTION



MOTIVATION

Definition : A network is given by

a set of nodes;

a set of edges linking these nodes.

Networks are used to model complex systems of interactions :

social networks;
protein-protein interactions;

ecological networks;



DEFINITIONS

Consider undirected, unweighted network with no self-loop.

The network is described by

a set of n nodes {1,...,n};
a set of edges & = {{i,j},1 <4,j <n}.

The adjacency matrix is given by

Aij:{ 1 if{i,j}eé

0 otherwise.
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MISSING OBSERVATIONS

Missing observations on the presence or absence of edges.
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MODEL

The adjacency matrix A is random :
* 1.4.d a *
A,;16;; ~ Bernoulli(©;;).

©" € [0, 1]™*™ is the matrix of connection probabilities.
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MODEL

The adjacency matrix A is random :

* 1.1.d a *

A,;16;; ~ Bernoulli(©;;).

©" € [0, 1]™*™ is the matrix of connection probabilities.
The sampling matrix is random :

i.3.d .

Q,;; ~ Bernoulli(IL;).

Objective : Estimate ©* for

network denoising;
link prediction.

Need assumptions on the structure of !



COMMUNITY STRUCTURES IN NETWORKS
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Figure : Network of interactions within a primary school, Stehlé et al. (2011).



THE STOCHASTIC BLOCK MODEL

Stochastic block model with £ communities :

each node ¢ belongs to a community z; € {1,...,k};
z* € {1,...,k}"™ is the vector of communities;

Q* € [0,1]¥* is the matrix of connection probabilities of the
communities;

for all pairs of nodes (i,j),i # j:
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THE STOCHASTIC BLOCK MODEL

Stochastic block model with £ communities :

each node ¢ belongs to a community zf € {1, ..., k};
z* € {1,...,k}"™ is the vector of communities;

Q* € [0,1]* is the matrix of connection probabilities of the
communities;

for all pairs of nodes (4,5), 1 # j :
G(Q*7z*)ij =P (A” = 1|Z:< = @y 55 = b) =

Sparse networks : |Q*||o. < oy,



PREVIOUS RESULTS

GAO ET AL. (2015), KLoPP ET AL. (2017), GAO ET AL. (2016)

Least square estimation for uniform sampling (II;; = p) :

= ~ q 2
(QF5,215) e argmin 19(Q, 2) — 2°0,A,4Q., .,
1<)

QE[0., )85k, z€{1,... k)
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Least square estimation for uniform sampling (II;; = p) :

= ~ q 2
(QF5,215) e argmin 19(Q, 2) — 2°0,A,4Q., .,
1<)

Qe[0,p,, ]85k, 2€{1,.. .k}
Convergence rate : With large probability,

Minimax optimal if pp,, > 18%),

n
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PREVIOUS RESULTS

GAO ET AL. (2015), KLoPP ET AL. (2017), GAO ET AL. (2016)

Least square estimation for uniform sampling (II;; = p) :

= ~ q 2
(QF5,215) e argmin 19(Q, 2) — 2°0,A,4Q., .,
1<)

QE[0., )85k, z€{1,... k)

Convergence rate : With large probability,

Minimax optimal if pp,, > 18%),

n

Least square estimator cannot be computed in polynomial time!

o _ @(/QLS7 2LS)H; <L
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MAXIMUM LIKELIHOOD ESTIMATION

Assumptions : Foralli # j,0 <y, <©;,; <p, <L

Maximum likelihood estimator :

(QML,EML> E argmax £0(Q, 2)
Q[ o185 M 2E{1,. K}

’CQ(Qa Z) = ZQ'LJ (Azg log(in,zj) + (1 - A’L]) IOg(]. - in,zj)> .

1<j
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MAXIMUM LIKELIHOOD ESTIMATION

Assumptions : Foralli # j,0 <y, <©;,; <p, <L

Maximum likelihood estimator :

(QML,EML> E argmax £0(Q, 2)
Q€[ ppl55m 2€{15 kI
’CQ(Qa Z) = ZQ'LJ (Alj log(in,zj) + (1 - A’L]) IOg(]. - in,zj)> .

1<j

Maximum likelihood estimator cannot be computed in polynomial
time... Variational approximation is used in practice.
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MAXIMUM LIKELIHOOD ESTIMATION

Assumptions : Foralli # j, 0 <, < ©;; <p, <1.
Maximum likelihood estimator :

(QME, ML) ¢ argmin K (A,0(Q,2))

QE[n-pn b5k 2e{1,.. .k}

Kq(A,0)=> Q.kl(A;0,).

i<j

Maximum likelihood estimator cannot be computed in polynomial
time... Variational approximation is used in practice.

1



RESULTS

Theorem (G., KLopp (2021))

If p,, > n~1, with probability at least 1 — 9exp (—Cp, nlog(k)),

2
0" — B2 < C'p, (k2 + nlog(k (f’) |
[0 — B[ < Cp, ( ) % (=257

where |0 7()\\H zu (] 7())



Assume uniform sampling (IT,; = p), and that Q* = p,,Q° with
0<QY <1

Corollary (G., KLopp (2021))
If p,, > n~1, with probability at least 1 — 9exp (—Cp,nlog(k)),

|07~ B} < Cgo® (k2 + nlog(k)

Then, maximum likelihood estimation is minimax optimal.



SBM APPROXIMATION OF REGULAR GRAPHON

Sparse graphon model :
0;; = p,W (G, ¢;), where ¢; "X 1 ([0, 1)).

Approximate W using a SBM with & communities.

14



SBM APPROXIMATION OF REGULAR GRAPHON

Sparse graphon model :
0;; = p,W (G, ¢;), where ¢; "X 1 ([0, 1)).

Approximate W using a SBM with & communities.

Theorem (G., KLopp (2021))

If0<ec<W(z,y) <1and p, > nL, with probability at least
1—9exp (—Cp,nlog(k)),

|0 = B3 < C.p,, (K +nlog(k)) + X1 (67,0(Q,2))) -

(a,z) € argmin X1 (07,0(Q, 2)).

QE[Vn,0n 55k, 2€{1,.. .k}

14



CONCLUSION

The maximum likelihood estimator cannot be computed in
polynomial time, but its computationally efficient variational
approximations are used.

When ©" has entries of the same order of magnitude, MLE is
minimax optimal.

MLE is adaptive to the sampling scheme II.

When the network follows a smooth graphon model, we can use
the stochastic block model as an approximation.



FINITE CONTINUUM-ARMED BANDITS



BANDITS FOR SEQUENTIAL DECISION-MAKING PROBLEMS

A sequential decision problem : At each round t =1,...,T

the agent chooses an action k, € {1,..., N} based on the
observations collected so far;

she receives a reward y, such that E [y, |k,] = m,, .

Goal : Maximize the cumulative reward :

[E[kat].

t<T



BANDITS FOR SEQUENTIAL DECISION-MAKING PROBLEMS

A sequential decision problem : At each roundt=1,...,T

the agent chooses an action k, € {1,..., N} based on the
observations collected so far;

she receives a reward y, such that E [y, |k,] = m,, .

Goal : Minimize the regret :

Ry =Tmy. — [E{ka }, where k* € argmaxm,,.
i<t k<N

Exploration-exploitation trade-off



TwO BANDIT PROBLEMS

Finite continuum-armed bandits :

the agent has access to a set of actions with covariates;

each action can only be chosen once.

— Motivation : allocation of a finite budget between competing
candidates.

Biased linear bandits :

the agent has access to a set of actions with covariates;

the feedback for choosing an action is biased against a group of
actions.

— Motivation : concerns regarding unfair evaluations.



FINITE CONTINUUM-ARMED BANDIT

An agent is presented with a set of actions {ay, ...,ay} (we consider
a; € [0,1]).

Ateachroundt=1,..,T

the agent chooses an action ¢(t) € {1, ..., N} with covariate a),

she receives the reward y, € [0, 1] such that E[y,|a,q) = a] = m(a).

Goal : Maximize the cumulative reward.

19



FINITE CONTINUUM-ARMED BANDIT

An agent is presented with a set of actions {ay, ...,ay} (we consider
a; € [0,1]).

Ateachroundt=1,..,T
the agent chooses an action ¢(t) € {1, ..., N} with covariate a),

she receives the reward y, € [0, 1] such that E[y,|a,q) = a] = m(a).

Goal : Maximize the cumulative reward.

Variant of the continuum-armed bandit (KLEINBERG (2004), AUER ET
AL. (2007), BUBECK ET AL. (2007)).

19



PRELIMINARY REMARKS

No-repetition constraint :

leads to lower cumulative rewards;
changes the exploration-exploitation trade-off;

changes the regret.

20



PRELIMINARY REMARKS

No-repetition constraint :

leads to lower cumulative rewards;
changes the exploration-exploitation trade-off;

changes the regret :

RT = Zm(ad,*(t)) — §m(a¢<t))

t<T

The oracle strategy ¢* is such that

MGy (1)) = M(Cge(2)) 2 o 2 M(Agr(iv))-

20



EXAMPLE

reward
1 d5
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Goal : Minimize the regret

The oracle strategy ¢* is such that

MGy (1)) = M(Age(2)) 2 o = M(Agr(v))-

Remark :

¢* has decreasing rewards;
difficulty of the problem governed by p =T /N.

22



ASSUMPTIONS

Assumption (A1) : a, ‘%% 2(]0, 1)).

The oracle strategy ¢* selects actions a such that m(a) > m(a (1))
Under Assumption (A1), m(a.(p)) ~ M, where

M =min{A: X({z: m(x) > A}) < p}.

23
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ASSUMPTIONS

M =min{A: X({z: m(z) > A}) < p}.

i.9.d

Assumption (A1) : a; "~ 1([0, 1]).
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ASSUMPTIONS

M =min{A: X({z: m(x) > A}) < p}.

Assumption (A1) : a; <" 2(]0, 1)).

Assumption (A2) : For all (z,y) € [0,1]%,

[m(z) —m(y)| < max{|M —m(z)|, L |z —yl}.
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ASSUMPTIONS

M =min{A: X({z: m(z) > A}) < p}.

Assumption (A1) : a, ‘%% 2([0, 1)).
Assumption (A2) : For all (z,y) € [0, 1],

[m(z) —m(y)| < max{|M —m(z)|, L |z —yl}.

Assumption (A3) : For all e € (0, 1),

Az : [M —m(z)] < €}) < Qe.

25



UPPER CONFIDENCE BOUND FOR FINITE BANDITS

Idea: Discretize the problem by dividing [0, 1] into K intervals, then
use UCB on the corresponding finite multi-armed bandit problem.

SR
\/\\
AEEEEEER

O b bt tdtttttttttttt 4+ ++ -+ ++++1 x

/;,(r)

my, = Kffk m(a)da.

26



Finite Multi-Armed Bandit (FMAB) A player is presented with a set of
K actions.

Ateachroundt=1,..,T

the agent chooses an action k, € {1,..., K};

she receives the reward y, such that E[y|¢(t)] = m,, ;

27



UPPER CONFIDENCE BOUND FOR FINITE BANDITS :'

Parameters: K, ¢
Initalization :

Divide [0, 1] into K intervals

Choose one action into each interval
Fort=K+1,..,Tdo:

log(T/)
2np (1)

Choose interval k, € argmax, m,,(n,(t)) +

Choose one action uniformly at random from interval k,,

28



ANALYSIS OF THE ALGORITHM

Regret

Ry = Zm (‘%*(t)) — Zm (%(t)) .

t<T t<T

29



ANALYSIS OF THE ALGORITHM

Regret

Ry = ) m(agq)—Y_m(ayy)
t<T

t<T

= D m(ag) = Y m(age) +Y_m(agm) — D m(ayy),

t<T t<T t<T t<T

R(Td) R(TFMAB)

where ¢4 is the oracle strategy for the discretized problem.

29



reward

1<_

")

} Il 1 |
0+ +++ Tt A1 x

Assume that m; > my > ... > my,.

¢¢ chooses all actions in interval I, .., up to I; with f ~ pK and

30



reward

]
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il | ! ! [ LT il |
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I 1 1

I |

f |

oM

T

¢ and ¢* mostly select the same actions.
=RY = S m(ayy)— S m(a is small.
r =2 (agw) . (@ga)
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(FMAB)

CONTROL OF R

Ry AP Zm<%d ) Zm(% )

t<T t<T
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(FMAB)

CONTROL OF R

Ry M= 3 m(agun) = > _m (asw)

t<T t<T

Under (A2), if a € I, m(a) ~ m,. Then

(FMAB ZNkmk an(T)mk

k<f k<K

32



(FMAB)

CONTROL OF R

Ry AP = D m(ag) =Y _m(agu)

t<T t<T

Under (A2), if a € I, m(a) ~ m,,. Then

FMAB
1%% )~ jE:JVkTHk'_ 25371k(777nk
k<f k<K
~ Z(Nk—nk(T +an (M —my,)

k<f k>f

32



REMAD o ST(N — ng (1)) (my, — M) + > i (T) (M — my)
k<f k>f

Intervals k > f are sub-optimal : we bound > n,(T)(M — my,)
k>f
using classical arguments for continuum-armed bandits.

Intervals k < f are optimal, but with different rewards. We show
that all intervals k < f — C are exhausted.

58



RESULTS

Theorem (G. '21)
For the choice K = N'/3log(N)~2/3 | if K > p~ !,
Ry < CL7Q (T/p)l/g log(T/p)4/3

with probability 1 — o(1).

Remarks :

Matching lower bounds up to Cy, , log(T'/p)*/*;

In classical continuum-armed bandits, under similar assumptions on m,
K =/T/log(T) and R < /T log(T);

34



CONCLUSION

Finite Continuum-Armed Bandits model situations of sequential
allocation of T resources between N competing options.

When T'/N is fixed, exploration-exploitation trade-off changes :
smaller K leads to lower regret rates.

As T/N — 0, regret rate and optimal K increases, and the problem
reduces to a classical Continuum-Armed Bandit.

85



BIASED LINEAR BANDITS




WHY FAIRNESS IN MACHINE LEARNING?

Machine Learning is ubiquitous in daily life.

“Mercer ! metll PRODUCTS Y CUSTOMERS ¥ PRICING RESOURCES ¥ REQUEST A DEMO

Talent Assessment | 16 Min Read

How Al-based HR Chatbots are Simplifying
Pre-screening

37



WHY FAIRNESS IN MACHINE LEARNING?

Machine Learning is ubiquitous in daily life.

SCIENCE ADVANCES | RESEARCH ARTICLE

RESEARCH METHODS Copyright © 2018
The Authors, some

The accuracy, fairness, and limits s rsre

of predicting recidivism Amercan Asodtion

for the Advancement
of Science. No claim to
original US. Government
Works. Distributed
under a Creative

Julia Dressel and Hany Farid*

Algorithms for predicting recidivism are commonly used to assess a criminal defendant’s likelihood of c¢ itting a
crime. These predictions are used in pretrial, parole, and sentencing decisions. Proponents of these systems argue that Commons Attribution
big data and advanced machine learning make these analyses more accurate and less biased than humans. We show, NonCommercial
however, that the widely used commercial risk assessment software|COMPAS is no more accurate or fair than predic- License 4.0 (CC BY-NO).
ions made by people with little or no e. [In addition, despite COMPAS's collection of 137

features, the same accuracy can be achieved with a simple linear predictor wnth only two features.
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LINEAR BANDITS FOR SEQUENTIAL DECISION

Linear bandit for sequential decision : At each round t =1, ..., T

the agent chooses an action z, € X C R?;
she receives the reward z; v;

she observes some feedback y, = 2/ v + &, &, S N(0,1).

38



LINEAR BANDITS FOR SEQUENTIAL DECISION

Linear bandit for sequential decision : At each round t =1, ..., T

the agent chooses an action z, € X C R?;

she receives the reward z; v;
she observes some feedback y, = 2/ v + &, &, S N(0,1).

Goal : Minimize the regret

Ry = Tgc*T'y - [E[Z:vjv}, where z* € argmaxz .
t<T zeX

38



Classical algorithms : LINEAR UPPER CONFIDENCE BOUND ?, PHASED
ELIMINATION 3, INFORMATION DIRECTED SAMPLING *

Assumption : Rewards are bounded : |2Ty| < 1, |X] < o0

Theorem (LATTIMORE and SzEPESVARI (2020))

The regret of PHASED ELIMINATION fulfills

Ry < C+/dT log(|X|T).

39



SEQUENTIAL DECISIONS WITH UNFAIR FEEDBACKS

Biased linear bandit : At each round t =1,..., T

the agent chooses an action z, € X C R,

she receives the unobserved reward z; ~;

she observes a feedback y, = x/ v +&,.

40



SEQUENTIAL DECISIONS WITH UNFAIR FEEDBACKS

Biased linear bandit : At each round t =1,..., T

the agent chooses an action z, € X C R,

she receives the unobserved reward z; ~;

she observes a feedback y, = x/ v +&,.

Assumption : |[X| < oo; [xT| < 1.

40



SEQUENTIAL DECISIONS WITH UNFAIR FEEDBACKS

Biased linear bandit : At each round t =1,..., T

the agent chooses an action z, € X C R,

she receives the unobserved reward z; ~;

she observes a feedback y, = x/ v +&,.
Assumption : |[X| < oo; [xT| < 1.

Goal : Minimize the regret

Ry = Zx*Tv = [E{szfy}, where z* € argmaxx ' 7.
t<T t<T weX

40



EXAMPLE

x, = (0, 1) * y = (1+06,1-9)

o

-
x3= (-1, 0)

e

1,0

x, Is the best action, z, is near-optimal, x5 is very sub-optimal;
we need to estimate the bias with precision §

41



OUTLINE OF FAIR PHASED ELIMINATION

Main difficulty
It is easy to estimate a6, with a, = (f ) and 6 = (), but harder to
estimate z ' ~. 4

Main ideas

Within a group, feedback and rewards are the same (up to an
additive constant) : we can use usual linear bandit technics such
as phased elimination.

To compare action across groups, estimate the bias independently.

4



BIAS ESTIMATION

If we sample each action x € X exactly m times, the Ordinary
Least Square estimator is

f=Vv+(m ) > ay, Yy, Where V(mp) = 3 my(r)aay = mV ().

t<n zeX

43



BIAS ESTIMATION

If we sample each action x € X exactly m times, the Ordinary
Least Square estimator is

6=vt(m )>_ag, Y, Where V(mp) = 3 m azal = mV ().

t<n zeX

Confidence bound : For all u € Range(V (u)),

P (‘(9 G)Tu‘ < \/2m1 (o —T ((15)) >1-96.

T +

where |[ul?, . ==u u.

43



BIAS ESTIMATION

If we sample each action z € X exactly m times, the Ordinary
Least Square estimator is

é: V+(7n )Zaztyt' Where V(Wl ) = Z m awa; = Tn/V( )
t<n zeX

Confidence bound : If e, ; € Range(V (),

1
P (|&J—w| < \/2m1 HedHH2 . log (6)) >1-—4.

i — T
sincew =10"ey, .

43



First idea : Estimate w = "¢, USing eq,,-optimal design

Find wre argmin||ed+1||%/<m+.
ﬂeycdﬂ

44



First idea : Estimate w = "¢, USing eq,,-optimal design

Find wre argmin||ed+1||%/<m+.
I'Ley)cdﬂ

Set e = leaal -

44



Second idea : Estimate w = "¢, ; using A-optimal design

ForA, =(z*—x2)'y, A= (Ag),cq find

p® € argmin > ey (@A, such that Hed+1”\2/(p)+ =

neM

€d+1

1.

45



Second idea : Estimate w = "¢, ; using A-optimal design

ForA, =(z*—x2)'y, A= (Ag),cq find

p® € argmin > ey (@A, such that Hed+1”\2/(p)+ =

neM

€d+1

Setw(A) =3 pA ()A,.

1.

45



WORST-CASE REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills
Ry < Cri/log(T)V3T2/3

for large T.

46



WORST-CASE REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))
FAIR PHASED ELIMINATION algorithm fulfills
R, < CrkY?log(T)/3T2/3

for large T.

Remarks

Matching lower bound up to a log(T)'/3;

Regret in ©(T2/3) instead of ©(T/2) is the price for debiasing the
feedbacks;

w3 captures the dependency on the geometry of the set of
actions.

46



GAP-DEPENDENT REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills

2
A%

min

d KA )
R, <C X v log(T) for large T,

where A, = min, .. A, A, = min, A

Zpr T T

47



GAP-DEPENDENT REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills

d K(AVALVer)
<
R, <C (Amin v Ai log(T)

where A, = min, . A, A, =min, . A, and ey = (s 1e8T)/1)'".

forlarge T,

47



GAP-DEPENDENT REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills

d K(AVALVer)
<
R, <C (Amin v Ai log(T)

where A, = min, . A, A, =min, . A, and ey = (s 1e8T)/1)'".

forlarge T,

Remarks

Matching lower bounds up to numerical constant.

%5@ is the (worst gap-dependent) regret of the classical linear bandit;

%‘f’m is the price for debiasing the feedbacks;

47



CONCLUSION

Biased linear bandits model sequential decision-making scenarii
with biased observations.

In the worst case, the regret can be ©(T%/3) instead of O(v/T).
The geometric dependence is captured by the largest margin to a
separating hyperplane.

In gap-depend worst case :
an additional 22280 term shows up;
+

can be as easy as classical bandit if £8Llge) < doa)
%

min

48



THANK YOU FOR YOUR ATTENTION!
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APPENDIX



GEOMETRY OF BIAS ESTIMATION

e YLy
\/1:+1

Lemma
Kk, IS the largest k > 0 such that there exists an hyperplane H
separating the two groups with m = Y£=L 1, where :

T VeHL
Is the margin to 7 ;

M is the maximum distance of all points to the hyperplane.
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FCABWITHT /N — 0

Corollary (G. (2021))

Assume that T = 0.5N“ for some « € (2/3 + €y °, 1]. For the choice
K = a2/3(21)Y/(2%) Jog(2T)~2/3 and § = N—4/3,

Ry < Cg [TV log(T)*3
with probability 1 — o(1).

Remarks
When p — 0, regret increases from FCAB to CAB regime.

a =2/3+ ey corresponds to transition from FCAB to CAB.
Then, T =N/K :

all optimal actions are in 1interval;
no interval is ever exhausted.
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SBM APPROXIMATION OF SMOOTH GRAPHON

Assume full observation : 11, ; =

a-Hoelder regularity assumption : For all (z,y) € [0, 1],

W', ') = Py (@), (&' = 2,5 — )| < M (|2 =" Jy —y ")
Corollary (G., KLopPP (2021))

1
If pp, >n7, fork = [nmpﬁ?(a“q,

|6" — 8|2 < C,pn (n* T 4 nlog(p,m) )

with probability at least 1 — 9exp (—Cp,,n log(k)).
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