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MAXIMUM LIKELIHOOD ESTIMATION FOR LINK PREDICTION



MOTIVATION

Definition : A network is given by

∙ a set of nodes ;
∙ a set of edges linking these nodes.

Networks are used to model complex systems of interactions :

∙ social networks ;
∙ protein-protein interactions ;
∙ ecological networks ;
∙ ...

3



DEFINITIONS

Consider undirected, unweighted network with no self-loop.

The network is described by

∙ a set of 𝑛 nodes {1, ..., 𝑛} ;
∙ a set of edges ℰ = {{𝑖, 𝑗}, 1 ≤ 𝑖, 𝑗 ≤ 𝑛}.

The adjacency matrix is given by

A𝑖𝑗 = { 1 if {𝑖, 𝑗} ∈ ℰ
0 otherwise.
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EXAMPLE

A =
⎧{{
⎨{{⎩

0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

⎫}}
⎬}}⎭
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MISSING OBSERVATIONS

Missing observations on the presence or absence of edges.

A =
⎧{{
⎨{{⎩

0 ? 1 ?
? 0 0 1
1 0 0 1
? 1 1 0

⎫}}
⎬}}⎭

Ω =
⎧{{
⎨{{⎩

1 0 1 0
0 1 1 1
1 1 1 1
0 1 1 1

⎫}}
⎬}}⎭
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MODEL

The adjacency matrix A is random :

A𝑖𝑗|Θ∗
𝑖𝑗

𝑖.𝑖.𝑑∼ Bernoulli(Θ∗
𝑖𝑗).

Θ∗ ∈ [0, 1]𝑛×𝑛 is the matrix of connection probabilities.

The sampling matrix is random :

Ω𝑖𝑗
𝑖.𝑖.𝑑∼ Bernoulli(Π𝑖𝑗).

Objective : Estimate Θ∗ for

∙ network denoising ;
∙ link prediction.

Need assumptions on the structure of Θ∗ !
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COMMUNITY STRUCTURES IN NETWORKS

Figure : Network of interactions within a primary school, Stehlé et al. (2011).
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THE STOCHASTIC BLOCK MODEL

Stochastic block model with 𝑘 communities :

∙ each node 𝑖 belongs to a community 𝑧∗𝑖 ∈ {1, ..., 𝑘} ;
∙ 𝑧∗ ∈ {1, ..., 𝑘}𝑛 is the vector of communities ;
∙ Q∗ ∈ [0, 1]𝑘×𝑘 is the matrix of connection probabilities of the
communities ;

∙ for all pairs of nodes (𝑖, 𝑗), 𝑖 ≠ 𝑗 :
ℙ (A𝑖𝑗 = 1|𝑧∗𝑖 = 𝑎, 𝑧∗𝑗 = 𝑏) = Q∗

𝑎,𝑏.
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THE STOCHASTIC BLOCK MODEL

Stochastic block model with 𝑘 communities :

∙ each node 𝑖 belongs to a community 𝑧∗𝑖 ∈ {1, ..., 𝑘} ;
∙ 𝑧∗ ∈ {1, ..., 𝑘}𝑛 is the vector of communities ;
∙ Q∗ ∈ [0, 1]𝑘×𝑘 is the matrix of connection probabilities of the
communities ;

∙ for all pairs of nodes (𝑖, 𝑗), 𝑖 ≠ 𝑗 :
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Sparse networks : ‖Q∗‖∞ ≤ 𝜌𝑛.
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PREVIOUS RESULTS

GAO ET AL. (2015), KLOPP ET AL. (2017), GAO ET AL. (2016)

Least square estimation for uniform sampling (Π𝑖𝑗 = 𝑝) :

(Q̂𝐿𝑆, ̂𝑧𝐿𝑆) ∈ argmin
Q∈[0,𝜌𝑛]𝑘×𝑘𝑠𝑦𝑚,𝑧∈{1,..,𝑘}𝑛

‖Θ(Q, 𝑧)‖2𝐹 − 2
𝑝∑𝑖<𝑗

Ω𝑖𝑗A𝑖𝑗Q𝑧𝑖,𝑧𝑗
.

Convergence rate : With large probability,

∥Θ∗ −Θ(Q̂𝐿𝑆, ̂𝑧𝐿𝑆)∥
2

𝐹
≤ 𝐶 𝜌𝑛

𝑝 (𝑘2 + 𝑛 log(𝑘)) .

Minimax optimal if 𝑝𝜌𝑛 ≥ log(𝑘)
𝑛 .

Least square estimator cannot be computed in polynomial time !
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MAXIMUM LIKELIHOOD ESTIMATION

Assumptions : For all 𝑖 ≠ 𝑗, 0 < 𝛾𝑛 ≤ Θ∗
𝑖,𝑗 ≤ 𝜌𝑛 < 1.

Maximum likelihood estimator :

(Q̂𝑀𝐿, ̂𝑧𝑀𝐿) ∈ argmax
Q∈[𝛾𝑛,𝜌𝑛]𝑘×𝑘𝑠𝑦𝑚,𝑧∈{1,..,𝑘}𝑛

ℒΩ(Q, 𝑧)

ℒΩ(Q, 𝑧) = ∑
𝑖<𝑗

Ω𝑖𝑗 (A𝑖𝑗 log(Q𝑧𝑖,𝑧𝑗
) + (1 − A𝑖𝑗) log(1 − Q𝑧𝑖,𝑧𝑗

)) .

Maximum likelihood estimator cannot be computed in polynomial
time... Variational approximation is used in practice.
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RESULTS

Theorem (G., KLOPP (2021))

If 𝜌𝑛 ≫ 𝑛−1, with probability at least 1 − 9 exp (−𝐶𝜌𝑛𝑛 log(𝑘)),

‖Θ∗ − Θ̂‖2Π ≤ 𝐶′𝜌𝑛 (𝑘2 + 𝑛 log(𝑘)) × ( 𝜌𝑛
(1 − 𝜌𝑛) ∧ 𝛾𝑛

)
2
.

where ‖Θ∗ − Θ̂‖2Π = ∑
𝑖<𝑗

𝛱𝑖𝑗 (Θ∗
𝑖𝑗 − Θ̂𝑖𝑗)

2
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Assume uniform sampling (Π𝑖𝑗 = 𝑝), and that Q∗ = 𝜌𝑛Q0 with
0 < Q0

𝑎𝑏 < 1.

Corollary (G., KLOPP (2021))

If 𝜌𝑛 ≫ 𝑛−1, with probability at least 1 − 9 exp (−𝐶𝜌𝑛𝑛 log(𝑘)),

‖Θ∗ − Θ̂‖2𝐹 ≤ 𝐶Q0
𝜌𝑛
𝑝 (𝑘2 + 𝑛 log(𝑘)) .

Then, maximum likelihood estimation is minimax optimal.
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SBM APPROXIMATION OF REGULAR GRAPHON

Sparse graphon model :
Θ∗

𝑖,𝑗 = 𝜌𝑛𝑊(𝜁𝑖, 𝜁𝑗), where 𝜁𝑖
𝑖.𝑖.𝑑.∼ 𝒰([0, 1]).

Approximate𝑊 using a SBM with 𝑘 communities.

Theorem (G., KLOPP (2021))

If 0 < 𝑐 < 𝑊(𝑥, 𝑦) < 1 and 𝜌𝑛 ≫ 𝑛−1, with probability at least
1 − 9 exp (−𝐶𝜌𝑛𝑛 log(𝑘)),

‖Θ∗ − Θ̂‖2Π ≤ 𝐶𝑐𝜌𝑛 ((𝑘2 + 𝑛 log(𝑘)) +𝒦Π (Θ∗, Θ(Q̃, ̃𝑧))) .

(Q̃, ̃𝑧) ∈ argmin
Q∈[𝛾𝑛,𝜌𝑛]𝑘×𝑘𝑠𝑦𝑚,𝑧∈{1,..,𝑘}𝑛

𝒦Π (Θ∗, Θ(Q, 𝑧)).
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CONCLUSION

∙ The maximum likelihood estimator cannot be computed in
polynomial time, but its computationally efficient variational
approximations are used.

∙ When Θ∗ has entries of the same order of magnitude, MLE is
minimax optimal.

∙ MLE is adaptive to the sampling scheme Π.

∙ When the network follows a smooth graphon model, we can use
the stochastic block model as an approximation.
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FINITE CONTINUUM-ARMED BANDITS



BANDITS FOR SEQUENTIAL DECISION-MAKING PROBLEMS

A sequential decision problem : At each round 𝑡 = 1,… , 𝑇

∙ the agent chooses an action 𝑘𝑡 ∈ {1, ..., 𝑁} based on the
observations collected so far ;

∙ she receives a reward 𝑦𝑡 such that 𝔼 [𝑦𝑡|𝑘𝑡] = 𝑚𝑘𝑡
.

Goal : Maximize the cumulative reward :

𝔼[∑
𝑡≤𝑇

𝑚𝑘𝑡
].
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observations collected so far ;

∙ she receives a reward 𝑦𝑡 such that 𝔼 [𝑦𝑡|𝑘𝑡] = 𝑚𝑘𝑡
.

Goal : Minimize the regret :

𝑅𝑇 = 𝑇𝑚𝑘∗ − 𝔼[∑
𝑡≤𝑇

𝑚𝑘𝑡
], where 𝑘∗ ∈ argmax

𝑘≤𝑁
𝑚𝑘.

Exploration-exploitation trade-off
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TWO BANDIT PROBLEMS

Finite continuum-armed bandits :

∙ the agent has access to a set of actions with covariates ;
∙ each action can only be chosen once.

→ Motivation : allocation of a finite budget between competing
candidates.

Biased linear bandits :

∙ the agent has access to a set of actions with covariates ;
∙ the feedback for choosing an action is biased against a group of
actions.

→ Motivation : concerns regarding unfair evaluations.
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FINITE CONTINUUM-ARMED BANDIT

An agent is presented with a set of actions {𝑎1, ..., 𝑎𝑁} (we consider
𝑎𝑖 ∈ [0, 1]).
At each round 𝑡 = 1,… , 𝑇

∙ the agent chooses an action 𝜙(𝑡) ∈ {1, ..., 𝑁} with covariate 𝑎𝜙(𝑡),
that she has not yet chosen ;

∙ she receives the reward 𝑦𝑡 ∈ [0, 1] such that 𝔼[𝑦𝑡|𝑎𝜙(𝑡) = 𝑎] = 𝑚(𝑎).

Goal : Maximize the cumulative reward.

Variant of the continuum-armed bandit (KLEINBERG (2004), AUER ET
AL. (2007), BUBECK ET AL. (2007)).
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PRELIMINARY REMARKS

No-repetition constraint :

∙ leads to lower cumulative rewards ;
∙ changes the exploration-exploitation trade-off ;
∙ changes the regret.

𝑅𝑇 = ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙(𝑡)).

The oracle strategy 𝜙∗ is such that

𝑚(𝑎𝜙∗(1)) ≥ 𝑚(𝑎𝜙∗(2)) ≥ ... ≥ 𝑚(𝑎𝜙∗(𝑁)).
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EXAMPLE
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Goal : Minimize the regret

𝑅𝑇 = ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙(𝑡)).

The oracle strategy 𝜙∗ is such that

𝑚(𝑎𝜙∗(1)) ≥ 𝑚(𝑎𝜙∗(2)) ≥ ... ≥ 𝑚(𝑎𝜙∗(𝑁)).

Remark :

∙ 𝜙∗ has decreasing rewards ;
∙ difficulty of the problem governed by 𝑝 = 𝑇/𝑁 .
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ASSUMPTIONS

Assumption (A1) : 𝑎𝑖
𝑖.𝑖.𝑑∼ 𝒰([0, 1]).

The oracle strategy 𝜙∗ selects actions 𝑎 such that 𝑚(𝑎) ≥ 𝑚(𝑎𝜙∗(𝑇 )).
Under Assumption (A1), 𝑚(𝑎𝜙∗(𝑇 )) ≈ 𝑀 , where

𝑀 = min {𝐴 ∶ 𝜆 ({𝑥 ∶ 𝑚(𝑥) ≥ 𝐴}) < 𝑝}.
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UPPER CONFIDENCE BOUND FOR FINITE BANDITS

Idea : Discretize the problem by dividing [0, 1] into 𝐾 intervals, then
use UCB on the corresponding finite multi-armed bandit problem.

𝑚𝑘 = 𝐾 ∫𝐼𝑘 𝑚(𝑎)𝑑𝑎.
26



Finite Multi-Armed Bandit (FMAB) A player is presented with a set of
𝐾 actions.

At each round 𝑡 = 1,… , 𝑇

∙ the agent chooses an action 𝑘𝑡 ∈ {1, ...,𝐾} ;
∙ she receives the reward 𝑦𝑡 such that 𝔼[𝑦𝑡|𝜙(𝑡)] = 𝑚𝑘𝑡

;
∙ each action 𝑘 can be played at most 𝑁𝑘 times.
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UPPER CONFIDENCE BOUND FOR FINITE BANDITS : 1

Parameters : 𝐾 , 𝛿
Initalization :

∙ Divide [0, 1] into 𝐾 intervals

∙ Choose one action into each interval

For 𝑡 = 𝐾 + 1, ..., 𝑇 do :

∙ Choose interval 𝑘𝑡 ∈ argmax𝑘 𝑚̂𝑘(𝑛𝑘(𝑡)) +√ log(𝑇/𝛿)
2𝑛𝑘(𝑡)

∙ Choose one action uniformly at random from interval 𝑘𝑡, remove it

∙ If interval 𝑘𝑡 is empty, remove it

1. adapted from AUER ET AL. (2007)
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ANALYSIS OF THE ALGORITHM

Regret

𝑅𝑇 = ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙(𝑡)) .

29



ANALYSIS OF THE ALGORITHM

Regret

𝑅𝑇 = ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙(𝑡))

= ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙𝑑(𝑡))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅(𝑑)
𝑇

+∑
𝑡≤𝑇

𝑚(𝑎𝜙𝑑(𝑡)) −∑
𝑡≤𝑇

𝑚(𝑎𝜙(𝑡))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅(𝐹𝑀𝐴𝐵)
𝑇

,

where 𝜙𝑑 is the oracle strategy for the discretized problem.
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Assume that 𝑚1 ≥ 𝑚2 ≥ ... ≥ 𝑚𝑘.

𝜙𝑑 chooses all actions in interval 𝐼1, ..., up to 𝐼𝑓 with 𝑓 ≈ 𝑝𝐾 and
𝑚𝑓 ≈ 𝑀 .
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𝜙𝑑 and 𝜙∗ mostly select the same actions.
⇒ 𝑅(𝑑)

𝑇 = ∑
𝑡≤𝑇

𝑚(𝑎𝜙∗(𝑡)) − ∑
𝑡≤𝑇

𝑚(𝑎𝜙𝑑(𝑡)) is small.
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CONTROL OF 𝑅(𝐹𝑀𝐴𝐵)
𝑇

𝑅(𝐹𝑀𝐴𝐵)
𝑇 = ∑

𝑡≤𝑇
𝑚(𝑎𝜙𝑑(𝑡)) −∑

𝑡≤𝑇
𝑚(𝑎𝜙(𝑡))
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𝑅(𝐹𝑀𝐴𝐵)
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𝑡≤𝑇
𝑚(𝑎𝜙𝑑(𝑡)) −∑

𝑡≤𝑇
𝑚(𝑎𝜙(𝑡))

Under (A2), if 𝑎 ∈ 𝐼𝑘, 𝑚(𝑎) ≈ 𝑚𝑘. Then

𝑅(𝐹𝑀𝐴𝐵)
𝑇 ≈ ∑

𝑘≤𝑓
𝑁𝑘𝑚𝑘 − ∑

𝑘≤𝐾
𝑛𝑘(𝑇 )𝑚𝑘
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CONTROL OF 𝑅(𝐹𝑀𝐴𝐵)
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𝑅(𝐹𝑀𝐴𝐵)
𝑇 ≈ ∑

𝑘≤𝑓
𝑁𝑘𝑚𝑘 − ∑

𝑘≤𝐾
𝑛𝑘(𝑇 )𝑚𝑘

≈ ∑
𝑘≤𝑓

(𝑁𝑘 − 𝑛𝑘(𝑇 ))(𝑚𝑘 −𝑀) +∑
𝑘>𝑓

𝑛𝑘(𝑇 )(𝑀 −𝑚𝑘)
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𝑅(𝐹𝑀𝐴𝐵)
𝑇 ≈ ∑

𝑘≤𝑓
(𝑁𝑘 − 𝑛𝑘(𝑇 ))(𝑚𝑘 −𝑀) +∑

𝑘>𝑓
𝑛𝑘(𝑇 )(𝑀 −𝑚𝑘)

• Intervals 𝑘 > 𝑓 are sub-optimal : we bound ∑
𝑘>𝑓

𝑛𝑘(𝑇 )(𝑀 −𝑚𝑘)

using classical arguments for continuum-armed bandits.

• Intervals 𝑘 ≤ 𝑓 are optimal, but with different rewards. We show
that all intervals 𝑘 ≤ 𝑓 − 𝐶 are exhausted.
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RESULTS

Theorem (G. ’21)

For the choice 𝐾 = 𝑁1/3 log(𝑁)−2/3 , if 𝐾 > 𝑝−1,

𝑅𝑇 ≤ 𝐶𝐿,𝑄 (𝑇/𝑝)1/3 log(𝑇/𝑝)4/3

with probability 1 − 𝑜(1).

Remarks :

∙ Matching lower bounds up to 𝐶𝐿,𝑄 log(𝑇/𝑝)4/3 ;
∙ In classical continuum-armed bandits, under similar assumptions on 𝑚,
𝐾 =

√
𝑇/ log(𝑇 ) and 𝑅𝑇 ≤

√
𝑇 log(𝑇 ) ;

⇒ regrets in the FCAB are lower than in classical CAB !
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CONCLUSION

Finite Continuum-Armed Bandits model situations of sequential
allocation of 𝑇 resources between 𝑁 competing options.

When 𝑇/𝑁 is fixed, exploration-exploitation trade-off changes :
smaller 𝐾 leads to lower regret rates.

As 𝑇/𝑁 → 0, regret rate and optimal 𝐾 increases, and the problem
reduces to a classical Continuum-Armed Bandit.
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BIASED LINEAR BANDITS



WHY FAIRNESS IN MACHINE LEARNING?

Machine Learning is ubiquitous in daily life.
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LINEAR BANDITS FOR SEQUENTIAL DECISION

Linear bandit for sequential decision : At each round 𝑡 = 1,… , 𝑇

∙ the agent chooses an action 𝑥𝑡 ∈ 𝒳 ⊂ ℝ𝑑 ;
∙ she receives the reward 𝑥⊤

𝑡 𝛾 ;
∙ she observes some feedback 𝑦𝑡 = 𝑥⊤

𝑡 𝛾 + 𝜉𝑡, 𝜉𝑡
𝑖.𝑖.𝑑.∼ 𝒩(0, 1).

Goal : Minimize the regret

𝑅𝑇 = 𝑇𝑥∗⊤𝛾 − 𝔼[∑
𝑡≤𝑇

𝑥⊤
𝑡 𝛾], where 𝑥∗ ∈ argmax

𝑥∈𝒳
𝑥⊤𝛾.
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Classical algorithms : LINEAR UPPER CONFIDENCE BOUND 2, PHASED
ELIMINATION 3, INFORMATION DIRECTED SAMPLING 4

Assumption : Rewards are bounded : |𝑥⊤𝛾| ≤ 1, |𝒳| < ∞

Theorem (LATTIMORE and SZEPESVÁRI (2020))

The regret of PHASED ELIMINATION fulfills

𝑅𝑇 ≤ 𝐶√𝑑𝑇 log(|𝒳|𝑇 ).

2. ABBASI-YADKORI ET AL. (2011)
3. LATTIMORE and SZEPESVÁRI (2011)
4. KIRSCHNER ET AL. (2020)
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SEQUENTIAL DECISIONS WITH UNFAIR FEEDBACKS

Biased linear bandit : At each round 𝑡 = 1,… , 𝑇

∙ the agent chooses an action 𝑥𝑡 ∈ 𝒳 ⊂ ℝ𝑑, described by a sensitive
attribute 𝑧𝑥𝑡

∈ {−1, 1} ;
∙ she receives the unobserved reward 𝑥⊤

𝑡 𝛾 ;
∙ she observes a biased feedback 𝑦𝑡 = 𝑥⊤

𝑡 𝛾+𝑧𝑥𝑡
𝜔 + 𝜉𝑡.

Assumption : |𝒳| < ∞ ; |𝑥⊤𝛾| ≤ 1.

Goal : Minimize the regret

𝑅𝑇 = ∑
𝑡≤𝑇

𝑥∗⊤𝛾 − 𝔼[∑
𝑡≤𝑇

𝑥⊤
𝑡 𝛾], where 𝑥∗ ∈ argmax

𝑥∈𝒳
𝑥⊤𝛾.
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EXAMPLE

∙ 𝑥1 is the best action, 𝑥2 is near-optimal, 𝑥3 is very sub-optimal ;
∙ we need to estimate the bias with precision 𝛿
⇒ we need to sample 𝑥3 many times /.

41



OUTLINE OF FAIR PHASED ELIMINATION

Main difficulty
It is easy to estimate 𝑎⊤𝑥 𝜃, with 𝑎𝑥 = ( 𝑥

𝑧𝑥
) and 𝜃 = ( 𝛾

𝜔), but harder to
estimate 𝑥⊤𝛾.

Main ideas

1. Within a group, feedback and rewards are the same (up to an
additive constant) : we can use usual linear bandit technics such
as phased elimination.

2. To compare action across groups, estimate the bias independently.
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BIAS ESTIMATION

If we sample each action 𝑥 ∈ 𝒳 exactly 𝑚𝜇(𝑥) times, the Ordinary
Least Square estimator is

̂𝜃 = 𝑉 +(𝑚𝜇)∑
𝑡≤𝑛

𝑎𝑥𝑡
𝑦𝑡, where 𝑉 (𝑚𝜇) = ∑

𝑥∈𝒳
𝑚𝜇(𝑥)𝑎𝑥𝑎⊤𝑥 = 𝑚𝑉 (𝜇).

Confidence bound :
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𝑥∈𝒳
𝑚𝜇(𝑥)𝑎𝑥𝑎⊤𝑥 = 𝑚𝑉 (𝜇).

Confidence bound : For all 𝑢 ∈ Range(𝑉 (𝜇)),

ℙ(∣( ̂𝜃 − 𝜃)
⊤
𝑢∣ ≤ √2𝑚−1 ‖𝑢‖2𝑉 (𝜇)+ log(1

𝛿)) ≥ 1 − 𝛿.

where ‖𝑢‖2𝑉 (𝜇)+ ∶= 𝑢⊤𝑉 (𝜇)+𝑢.
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𝑥∈𝒳
𝑚𝜇(𝑥)𝑎𝑥𝑎⊤𝑥 = 𝑚𝑉 (𝜇).

Confidence bound : If 𝑒𝑑+1 ∈ Range(𝑉 (𝜇)),

ℙ(|𝜔̂ − 𝜔| ≤ √2𝑚−1 ‖𝑒𝑑+1‖
2
𝑉 (𝜇)+ log(1

𝛿)) ≥ 1 − 𝛿.

since 𝜔 = 𝜃⊤𝑒𝑑+1.
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First idea : Estimate 𝜔 = 𝜃⊤𝑒𝑑+1 using ed+1-optimal design

Find 𝜇∗ ∈ argmin
𝜇∈𝒫𝑒𝑑+1

‖𝑒𝑑+1‖2𝑉 (𝜇)+ .

Set 𝜅∗ = ‖𝑒𝑑+1‖2𝑉 (𝜇∗)+ .
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Second idea : Estimate 𝜔 = 𝜃⊤𝑒𝑑+1 using Δ-optimal design

For Δ𝑥 = (𝑥∗ − 𝑥)⊤𝛾, Δ = (Δ𝑥)𝑥∈𝒳, find

𝜇Δ ∈ argmin
𝜇∈ℳ𝑒𝑑+1

∑𝑥∈𝒳 𝜇(𝑥)Δ𝑥 such that ‖𝑒𝑑+1‖2𝑉 (𝜇)+ = 1.

Set 𝜅(Δ) = ∑𝑥∈𝒳 𝜇Δ(𝑥)Δ𝑥.
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WORST-CASE REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills

𝑅𝑇 ≤ 𝐶𝜅1/3
∗ log(𝑇 )1/3𝑇 2/3

for large 𝑇 .

Remarks

∙ Matching lower bound up to a log(𝑇 )1/3 ;
∙ Regret in Θ̃(𝑇 2/3) instead of Θ̃(𝑇 1/2) is the price for debiasing the
feedbacks ;

∙ 𝜅1/3
∗ captures the dependency on the geometry of the set of
actions.
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GAP-DEPENDENT REGRET

Theorem (G., CARPENTIER, GIRAUD (2022))

FAIR PHASED ELIMINATION algorithm fulfills

𝑅𝑇 ≤ 𝐶 ( 𝑑
Δmin

∨ 𝜅(Δ ∨Δ≠ ∨ 𝜀𝑇 )
Δ2

≠
) log(𝑇 ) for large 𝑇 ,

where Δmin = min𝑥≠𝑥∗ Δ𝑥, Δ≠ = min𝑧𝑥≠𝑧𝑥∗ Δ𝑥 and 𝜀𝑇 = (𝜅∗ log(𝑇 )/𝑇)1/3.

Remarks

∙ Matching lower bounds up to numerical constant.

∙ 𝑑 log(𝑇 )
Δmin

is the (worst gap-dependent) regret of the classical linear bandit ;

∙ 𝜅(Δ) log(𝑇 )
Δ2

≠
is the price for debiasing the feedbacks ;
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CONCLUSION

∙ Biased linear bandits model sequential decision-making scenarii
with biased observations.

∙ In the worst case, the regret can be Θ̃(𝑇 2/3) instead of Θ̃(
√
𝑇 ).

The geometric dependence is captured by the largest margin to a
separating hyperplane.

∙ In gap-depend worst case :
∙ an additional 𝜅(Δ) log(𝑇 )

Δ2
≠

term shows up ;

∙ can be as easy as classical bandit if 𝜅(Δ) log(𝑇 )
Δ2

≠
≤ 𝑑 log(𝑇 )

Δmin
.
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THANK YOU FOR YOUR ATTENTION !
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GEOMETRY OF BIAS ESTIMATION

Lemma
𝜅∗ is the largest 𝜅 ≥ 0 such that there exists an hyperplaneℋ
separating the two groups with 𝑚 =

√𝜅−1√𝜅+1𝑀 , where :
∙ m is the margin toℋ ;
∙ M is the maximum distance of all points to the hyperplane.
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FCAB WITH 𝑇/𝑁 → 0

Corollary (G. (2021))

Assume that 𝑇 = 0.5𝑁𝛼 for some 𝛼 ∈ (2/3 + 𝜖𝑁 5, 1]. For the choice
𝐾 = 𝛼−2/3(2𝑇 )1/(2𝛼) log(2𝑇 )−2/3 and 𝛿 = 𝑁−4/3,

𝑅𝑇 ≤ 𝐶𝑄,𝐿𝑇 1/(3𝛼) log(𝑇 )4/3

with probability 1 − 𝑜(1).

Remarks
∙ When 𝑝 → 0, regret increases from FCAB to CAB regime.

∙ 𝛼 = 2/3 + 𝜖𝑁 corresponds to transition from FCAB to CAB.
Then, 𝑇 = 𝑁/𝐾 :

∙ all optimal actions are in 1 interval ;
∙ no interval is ever exhausted.

5. 𝜖𝑁 = ( 2
3 log log(𝑁) + log(2)) / log(𝑁)
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SBM APPROXIMATION OF SMOOTH GRAPHON

Assume full observation : Π𝑖,𝑗 = 1.

𝛼-Hoelder regularity assumption : For all (𝑥, 𝑦) ∈ [0, 1]2,

∣𝑊(𝑥′, 𝑦′) − 𝒫⌊𝛼⌋
6((𝑥, 𝑦), (𝑥′ − 𝑥, 𝑦′ − 𝑦))∣ ≤ 𝑀 (|𝑥 − 𝑥′|𝛼−⌊𝛼⌋ + |𝑦 − 𝑦′|𝛼−⌊𝛼⌋)

Corollary (G., KLOPP (2021))

If 𝜌𝑛 > 𝑛−1, for 𝑘 = ⌈𝑛 1
1+(𝛼∧1) 𝜌

1
2+2(𝛼∧1)
𝑛 ⌉,

‖Θ∗ − Θ̂‖2𝐹 ≤ 𝐶𝑐𝜌𝑛 (𝑛 2
1+(𝛼∧1) 𝜌

1
1+(𝛼∧1)
𝑛 + 𝑛 log(𝜌𝑛𝑛))

with probability at least 1 − 9 exp (−𝐶𝜌𝑛𝑛 log(𝑘)).

6. 𝒫⌊𝛼⌋((𝑥, 𝑦), ⋅) is the Taylor polynomial of𝑊 of degree ⌊𝛼⌋ at point (𝑥, 𝑦)
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